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It is demonstrated that for crystal field potentials having
complex parameterizations characterized by low symmetry and
large number of independent parameters, the formulas for the
ImB%/ReBk ratios, i.e., for the parameters of the same k and |q],
correspond to a more general superposition medel requiring the
local metal-ligand symmetry to be v instead of C.., if the scaling
factors alone are treated phenomenologically. A formal expression
revealing the mutual interplay of both the distance and the nonax-
ial scaling factors has been obtained which allows the ratios
ImB./ReBY to be estimated more adequately. The generalization
is substantial indeed; the corresponding number of independent
intrinsic parameters of kth degree rises from one to k + 1. The
distinguished quality of these ratios allows them to be treated in a
distinguished way during the fitting of the potentials to experi-
mental data. The proper fitting is then easier, since the number of
independent parameters can be reduced. © 1995 Academic Press, Inc.

INTRODUCTION

The great number of independent B paramciers re-
quired for the description of low symmetry crystal fields
is the main hindrance to be overcome during the parame-
terization of their potentials. The effective form of the
potential, confined 1o the intraconfiguration interactions
only, i.e., for k = 2, 4 and 6, contains as many as 27
parameters for the €, point symmetry including 3 axial
(g = 0) real, and 12 pairs of off-axial (g # 0) complex
ones. Following the development of the central ion point
symmetry, up to the cubic symmetry, the number drops.
This is not an exclusively academic problem. Many of the
known laser maderiats, quantum counters and radiation
up and down converters which have found important ap-
plications arc characterized by low symmetry crystal
fields {I) and interpretation of their electronic energy
spectra cannot avoid the problem. An important place
among these materials is occupied by both stoichiometric
solid compounds and crystal matrices with C, or C; sym-
metry of the metal ton, such as LaF;, ReF;, Y0, YF;,
Re;04, and YAIO;, the crystal field potentials of which
are described with 14 parameters including 5 imaginary
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ones, ImB%, ImBY, ImBE, ImBS, and ImBE, as well as
the CaW0Q, and LiYF, matrices of S4 coordination sym-
metry of the doped metal, the potential of which requires
only one independent imaginary parameter, ImB$.

Knowledge of interrelations between the crystal field
parameters is equivalent to reduction of their number.
Some values of the ratios between the parameters of a
given kth degree can be obtained from the superposition
model (2) in which they result from the coordination ge-
ometry only. However, the assumption of the axial sym-
metry Ceo, of the local fields generated by individual li-
gands, which is crucial for the model, does not warrant
the needed accuracy. On the other hand, there is a con-
viction, supported by some findings (3, 4), that in the case
of crystal field potentials with complex parameterizations
the ratios of the parameters of the same & and |g|, i.e., the
ratios of type ImB./ReBk, play a distinguished role in
the superposition approach, since their formulas coire-
spond de facto to a model more general than that of C.,
local symmetry.

The validity of this hypothesis in the case of S central
ion point symmetry has recently been proved (5). Thus,
the assumption of the local symmetry v, instead of C,, is
enough to obtain for the ImB$/ReBS ratio (the only one
for this symmetry) an expression phenomenologically
equivalent to that for the axial C.., superposition model.
The scaling factors responsible for the differentiation of
the ligands now take into account both distance (radial)
and nonaxial corrections. Moreover, the modification of
the scaling factors resulting from the generalization is
explicitly defined within the frame of the generalized su-
perposition model. 1t is casy to show that the generaliza-
tion is substantial; there are & + 1 intrinsic parameters of
the kth degree (seven in this casc) for the v model instead
of one for the conventional C., model.

In this work the general validity, i.e., for an arbitrary
symmetry of the central ion, of the thesis on a distin-
guished quality of the lmB%/Re B ratios in the multipole
cxpansion of the crystal field potentials has been demon-
strated. This property allows the ratios to be introduced a
priori into the phenomenological fitting procedures for
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the low symmetry crystal field potentials to reduce the
number of the independent parameters.

FORMALISM

1. Crystal Field Potentials of
Complex Parameterization

~ The crystal field potential has to be real but its parame-
ters can be complex. The reality and Hermitianness of
the crystal ficld Hamiltonian given in the tensor notation
according to Wybourne (6) as

Hi= 2 2 2 B4 CPW), 0, [1]
J ¢

where j runs over all unpaired electrons of the metal ion,
and k and g over all effective ¢ components of the nor-
malized spherical tensor operators of rank &, C{(9;, @),
require, according to the Condon-Shortley phase con-
vention (7), the following relation between the parame-
ters to be fulfilled:

(Bi* = (-1)1BL,. (2]

Consequently, in the general case, the crystal field pa-
rameters, except the axial ones, are complex conjugate in
pairs. Instead of using the pairs of the B% and B* , param-
eters, it is more practical to apply their symmetrical and
antisymmetrical combinations, i.e., their real and imagi-
nary components:

ReB = % (BY + (—1)4B%,) 3]
ImBY = 5'; Bk — (—10BE,). 4]

For most actual crystal fields the parameters Bf are real,
i.e., B¢ = (BY)* = (—1)iB%,, and only ReB% = B% occur
in expansion [1]. The presence of a vertical v plane in the
central ion point symmetry group is the necessary and
sufficient condition for the reality of all the B parameters
in Eq. [1]. Besides, for the potentials composed of multi-
poles of k even the presence of a two-fold axis C; in the
plane perpendicular to the main axis (at least ;) ensures
the reality of the parameters too.

Among the 32 crystal field potentials of different point
symmetry, 15fork =2, 4, and6and 10fork=1,3,and 5
require complex parameters (8). They are, for & even,
Ci(12), CA12), Cx6), C6), Can(6), C3(3), C3 = S4(3),
Dy(2), D34(2), Cu2), S42), Can(2), Ce(1), Cs4(1), and
Cen(1), and for k£ odd, C((9), C,(6), Cx(3), D:(3), Ca(2)},
C3x(2), Co1), 84(1), Dy4(2), and Dy(1). In the parentheses
after the Schoenflies symbols of the groups, the nombers

of the imaginary parameters, Eq. [4], are given. These
numbers may always be reduced by one—see further.

Ignoring all the interconfiguration interactions, i.e.,
considering only the potentials with £ even and equal to
2, 4, and 6, each potential with complex parameters may
be described by means of three real axial parameters and
a certain number of pairs of the complex conjugate pa-
rameters resulting from the point symmetry; i.¢., the
number of the parameters in sum is odd. However, such
a parameterization is an excessive one. Any rotation of
the reference system about the z axis does not alter the
qualitative form of the potential (Eq. {1]}, leading simul-
taneously to realizations that are equivalent, although
differing in the off-axial parameters. Obviously, the axial
parameters are invariant with respect to the rotations.
There are certain particular rotations among them for
which any arbitrarily chosen ImB% parameter vanishes.
The corresponding x;, angle is given by

ImB%

tanlgxi) = 5oa% (5]
dXkq ReBﬁ

After rotation, the new parameter [B%] becomes real and
[B4] = [(ReB%? + (ImB4Y)'2, {6]

Consistently, the remaining off-axial parameters trans-
form themselves according to the two-dimensional rota-
tion matrix

[ReB%] = coslq'xi)ReBE + sin(g'xi)ImB%:

[MmB] = —sin(g'xu)ReBL + cos(g’ i) ImBE.
The elimination of a chosen imaginary parameter is
equivalent to the strict localization of the reference sys-
tem. After that all the parameters and ratios between
them are determined uniquely. The so-called standard-
ization procedure for the potentials consists just in rota-
tion (9, 10). Usually, the parameter ImB¥ of the lowest &
and g indices is eliminated; e.g., in the case of §; symme-
try this is done for the ImBj parameter. In the light of the
results of this paper the method finds a deeper justifica-
tion (see the Discussion).

2. The ImB./ReBY% Ratios in the Generalized
Superposition Model

The conviction that the ImBA/ReB¥ ratios take a spe-
cial place among the parameter ratios in expansions of
the crystal field potentials is derived from the close
similarity of the transformation properties of the corre-
sponding operators. Of course, the uniqueness of the
ImB%/ReBE ratios cannot be demonstrated in the frame-
work of the conventional superposition model in which
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BY = X CE' (B, afiibl, [8]

where 8;, «; are the spherical coordinates of the ith ligand

in the central reference system, f; ; is the distance factor |

scaling the parameters of kth degree according to differ-
ences in the metal-ligand distances R; in relation to a
certain average reference distance Ry, and by is the in-
trinsic parameter common in the model for all the kth
degree parameters.

The essential characteristic of the modél is that the
ratios of arbitrary crystal field parameters of the same kth
degree depend only on the coordination geometry and the
scaling factor, which is independent of ¢:

Rk > CYB:, apfi
qg i

B_zr’ N 2 Cfﬁ’*(ﬁs, ai)f;c.i‘

(9]

Due to the simplifying assumptions of the model, expres-
sions [9] for all the g and ¢’ are equivalent, considering
their formal adequacy.

To demonstrate the specific character of the
ImB%/ReB% ratios, we will consider the generalized su-
perposition model in which the assumption of the C.,
symmetry of the local fields is rejected and as a conse-
quence the counterpart of expression [8] takes the more
general form

Bf = E E Df;’ff;(af, Bis yidfuibf
e [10]
= 2 2 exp(—ig"y)d ¥ (BIexp(—igen) fiih{ |
i g

where Dg% (a;, By, v:) is the element of the rotation ma-
trix of rank 2k + 1 (7), d{(f-é (B:) is the real core of the
element dependent on the 3; angle only, o;, 8;, and y; are
the three Euler angles defining the transformation of the
local ith system to the central one, and b,‘f’ are the intrin-
sic parameters, which are as many as required by the
local symmetry.

There is a complete equivalence between the rotations
performed in relation to the frame of reference carried
with the moving object and those referred to the initial
fixed frame of axes. The first method is intuitively more
clear, the first rotation being by a (0 = « < 27r) about the
initial z axis, the second by 8 (0 = 8 < 7) about the new
¥’ axis, and the third rotation by y (0 = v < 22r) about the
Z axis in its last position z". The equivalent rotation, in
the original frame, is accomplished as follows: rotation
by ¥ about the z axis, rotation by 8 about the y axis, and
repeated rotation about the 7z axis by ¢, i.¢., in the reverse
order to the previous. Thus, 8; and «; are the angles be-
tween the z; axis, i.e., the axis joining the central ion with

the ith ligand, and the z and x axes of the central system,
respectively, whereas the v; angle fixes the local x; and y;
axes.

This generalized model, due to the number of free pa-
rameters involved, has no application from a practical
point of view. However, the point is not in the model
itself but in the mere statement that there is a ‘‘virtual””
version of the superposition model which is more accu-
rate due to the degree of its generality, in which only the
formulas for the ImB%/ReB% ratios keep their conven- -
titonal model form.

For clarity, we state the following: the intrinsic param-
eters met in expressions [8], [10] and further always refer
to the so-called local systems of the z axis joining the
central ion with a chosen ith ligand but with the center in
the central ion position, i.e., after the translation of the
actual local system of the ligand with the center in its
nucleus by —R. The relations between the parameters
corresponding to both these local systems will be men-
tioned later.

From the Euler angles definition results that if a verti-
cal symmetry plane v exists in the central ion point
group, expression [10] for the BX is invariant in relation to
the «; sign. In other words, cach ligand of the «; coordi-
nate has to have its partner of the —q; coordinate. In turn,
the presence of a vertical symmetry plane in the local
system is equivalent to the invariance of expression [10]
in respect of the y; sign. This means that the values B for
v; and —v; angles are simply identical.

3. The Proof of the Overmodel Adequacy of the
ImB%/ReB% Ratios

Hereafter, making use of the symmetry properties of
the rotation matrices (7), it will be demonstrated that for
the local symmetry v instead of C., the expressions for
the ImB%/ReB¥ ratios take the identical phenomenologi-
cal forms with those for the axial model, in which the B
are defined by Eq. [8]. Only the scaling factors f,; un-
dergo certain, strictly defined, modifications and their ef-
fective values can now depend on |g|.

Thus, for the local symmetry v, considering the invari-
ance of expression [10] with respect to the sign of y; it can
be presented in the form

! ., 1 .,
By=22 [5 exp(—ig'y) + 5 explig v,-)]
i q

X d9)(B:) exp(—iqa)fi.ib]
=2 > coslq'y) dX(B) exp(—iga)fiibd
i g

[11]

and similarly

Bt =2 X coslq'y) diy. (B) expligafi:by, [12]
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where exp(—iq'y:) (or exp(ig'y;)) is replaced by cos(g’y,)
which is equivalent under the symmetry.

Taking into consideration one of the symmetry proper-
ties of the rotation matrix,

d3B) = (-1 4dY,_ (B, [13]

and the reality of the intrinsic parameters (v local sym-
metry),

= (=D [14])

formula [12] can easily be transformed to the form

) expliqe) fribi?,
[15]

ke = (=1 2 E cos(—q'v;) a’(f;,q
i g

and since the summation runs over all g’ from -k to k,
we get

B, = (—1)7 2 3 cos(q'y:) d(B) expliga) fuib] -
i g
[16]

Expressions [11] and [16] of course obey relation [2] and
have the desired form, i.e., the phases of the intrinsic
contributions (for each individual ligand /) depend only
on the a; angles, as in the €., model, and the whole
modification resulting from the nonaxial components of
the local fields concerns the absolute values of the contri-
butions. They may be transformed to the form revealing
their modification compared to that for the simplified ax-
ial model:

>, cos(q'y)d @B fuib]

4% [17}
= [1 + ;ﬁ cos(q'y:) d("’((gt)) io]fk: 49
Introducing the designation
g

Jeai = [1 + qgo cos(q'yi ((;((2')) é;‘;]fk,.- [18]

for the effective scaling factor f ,;, we get

Bl =3 CP'(Bi, adfiaib)

' [19]

B‘iq = (_])q Ec(k)*(ﬁn i)f_‘k,q,ibgs

since

CE(Bir o) = DEL (0, Biv vi) = d§(B) exp(Figey).
[20]

This completes the proof of the postulated thesis.

In conclusion, for an arbitrary point symmetry of the
central ion (only the contribution of an individual ligand
has been considered) and for the v symmetry of the local
fields, the expressions for the ImB%/ReBY ratios are of
the same form as those for the conventional axial model
and only the phenomenological, in practical approach,
scaling factors (Eq. [18]) are subjected to definite modifi-
cations. Their analysis allows the factors, under certain
conditions, to be estimated more adequately.

The result obtained may be interpreted otherwise by
introducing an effective intrinsic parameter of axial char-
acter dependent on |g| and kind of ligand (/) according to

UC) (B )
“"(ﬁ,)

bl i) = b] + 2 cos(q'yi) b9, 21}

In general, the requirement of a vertical symmetry plane
for each ligand confines to a certain degree the permissi-
ble forms of the local potentials, since it reduces the num-
ber of independent intrinsic parameters from 2k + [ to
k + 1 (see Eq. [21]), but a proper measure of the general-
ization is rather the £ + 1 parameters compared to one. In
the C., model we have at our disposal only one intrinsic
parameter for each kth degree of the potential.

4. The Reality of the Crystal Field Parameters
(ImB% = 0) in the Generalized Superposition Model
as a Consequence of the Central Ion v Symmetry

When a vertical symmetry plane v occurs in the central
ton point group of symmetry the reality of the crystal field
parameters is implicitly ensured. However, the v plane
has to be chosen as the xz plane of the central reference
system. Nevertheless, it is instructive to trace, in the
frame of the generalized superposition model, the mecha-
nism of vanishing of all the ImB% parameters under the
condition. Obviously, the local v symmetry is not re-
quired now.

The global symmetry v forces the third Euler angles vy
for the corresponding ligands of coordinates «; and —e;,
respectively, to be of equal modulus but of opposite sign.
In addition, because of the change of orientation of the
local reference system due to the reflection, the intrinsic
parameters for both the ligands are mutually complex
conjugate.

Starting from definition [4] and general formula [10]
and considering only one pair of ligands as being symmet-
rical in respect to the v plane, one gets
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2i ImB¥%
= D, exp(—igq'y)d ) (B) expl~iga)feib{
q

— (=1)4 2 exp(—ig'y)d'i: (B expliga)fi:b§
2
+ 2, explig'y)d ) (B:) expligay)fi.:(b§)*
-

—(—1) E exp(iq')lf)dgﬁ),q(ﬁs) exp(—iga) fr.i(b{)*.
q
[22]

The first two sums describe the contribution of the ligand
of coordinates (R;, 8;, &), and the remaining two that of
its partner (R;, 8;, —o).

Using property [13], the equivalent of formula [2] for
the intrinsic parameters,

(b)Y = (=177, [23]
and remembering that the summation runs over all ¢’
from —k to k, it is easy to show that the first and fourth
sums in Eq. [22], as well as the second and third are

mutually compensated and hence the identity ImB% = 0 is
always valid.

DISCUSSION

The generalized effective scaling factor (Eq. [18]) turns
out to be a product of the distance factor, taking into
account a differentiation in the distances R; by the nonax-
ial factor responsible for the nonaxial components of the
local fields.

The distance scaling factor in the classical axial model
has been usually presented phenomenologically in the
form of a power law (Rp/R;)% with the power coefficients
I, taking rather large positive values, e.g., six or more (2,
11, 12). Obviously, for the closer ligands (R; < Ry), the
factor is greater than one, whereas for the remaining it is
smaller. For comparison, in the point charge model, the
crystal field parameters vary with the metal-ligand dis-
tance R as R~%+D je. asR3 R and R "fork =2, 4,
and 6, respectively.

On the other hand, since the signs of the small b4 /5
ratios may in principle be found from the ligand coordina-
tion geometry, the nonaxial factors, according to the
signs of cos(g’v,) and dg‘f)q{ﬁ,-)/dgg(ﬁj), can also be either a
little larger or a little smaller than one amplifying or re-
ducing the scaling factor effect according to their prod-
uct. The result of the mutual interplay of both the subfac-
tors can be qualitatively estimated based on the
coordination geometry only. However, what still remains
is the problem of the 5% /b? values, which are rather un-

known. Fortunately, with a good approximation, only the
terms with ¢' = 1 and 2 can be considered. This is a
consequence of the transformation properties of the
multipolar components of the potential for the translation
of the reference system along the z axis by R. After such
a translation the multipolar components of the potential
become transformed according to the scheme (13)

BANCYM®, @) = > B CH®', ¢),  [24]

k'=lq|

where the superscript prime refers to the system after the
translation, and 84(r) and B%(r') are the initial and the
final radial coefficients, which are correlated by the
Sharma formula (13). If g%(r) ~ r~%*" as for the 2*-pole
moment, ,Bfg’(r’) ~ R-&*k'+D and is discriminated when
k + k' is large. As is seen, each ¢ component of the local
2“-pole moment is transformed into the superposition of
the g components of ail the 2¥'-pole moments of &' > |g]
with the corresponding Sharma coefficients 35(1"). The
main contribution to the axial parameters (g’ = 0} comes
from the ligand point change (83(r)C (S, @) = Bi(r)). In
addition, an essential contribution can be given by the
moments with & = I and 2 for which the dipolar and
quadrupolar polarizations of the ligand are responsible.
On the other hand, for higher ¢’s only the respective high
moments are effective {see Eq. [24]). Therefore, a dis-
tinct domination of the axial parameters is expected, and
among the off-axial ones of those with ¢’ = | and 2.
Consequently, the higher the £ and ¢ indices, the more
negligible the correction for the nonaxiality, and the
ImBE/ReB¥ ratios are more exactly described by the ax-
ial model formulas. This is why the elimination of the
ImB¥ parameter of the lowest £ and g is well founded. A
more penetrating analysis of the mutual interplay of both
the subfactors in the generalized scaling factor allows the
conventional formulas for the ImB5/ReB% ratios to be
applied for the wide class of crystal fields of v local sym-
metry (perfect or approximate). Moreover, we are abie
then to estimate the adequacy of the formuias better and
to understand the values which are incomprehensible in
the axial model.

The peneralization of the scaling factor concept is
equivalent to extending its phenomenological power form
without any limitation for the power law coefficients ¢,
even up to (or down to) nonphysical (from the axial
model point of view) negative values, when the nonaxial
factor that is opposed to the distance one dominates.
Some symptoms of this situation, such as artificially low
power coefficients r, in the phenomenological distance
factors, have been reported for the Yb** ion in the
scheelite matrix (11).
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